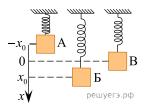

1. Тело двигалось вдоль оси Ox под действием силы \dot{F} . График зависимости проекции силы F_x на ось Ox от координаты x тела представлен на рисунке. На участках (O; a), (a; b), (b; c) сила совершила работу A_{0a}, A_{ab}, A_{bc} соответственно. Для этих работ справедливо соотношение:

1)
$$A_{0a} < A_{ab} < A_{bc}$$
 2) $A_{0a} < A_{bc} < A_{ab}$ 3) $A_{0a} = A_{bc} < A_{ab}$ 4) $A_{0a} = A_{ab} < A_{bc}$

3)
$$A_{0a} = A_{bc} < A_{ab}$$


4)
$$A_{0a} = A_{ab} < A_{bc}$$

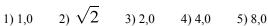
5)
$$A_{bc} < A_{ab} < A_{0a}$$

2. Модуль скорости движения v_1 первого тела массой m_1 в два раза больше модуля скорости движения v_2 второго тела массой m_2 . Если кинетические энергии этих тел равны ($E_{k1} = E_{k2}$), то отношение массы второго тела к массе первого тела равно:

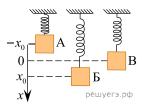
1)
$$\frac{1}{2}$$
 2) 1 3) $\sqrt{2}$ 4) 2 5) 4

3. На рисунке изображены три положения груза пружинного маятника, совершающего свободные незатухающие колебания с амплитудой x_0 . Если в положении B полная механическая энергия маятника W = 8,0 Дж, то в положении *Б* она равна:

1) 0 Дж


2) 2,0 Дж

3) 4,0 Дж


4) 6,0 Дж

5) 8,0 Дж

 Масса m₁ первого тела в два раза больше массы m₂ второго тела. Если модули скоростей этих тел равны $(v_1 = v_2)$, то отношение кинетической энергии первого тела к кинетической энергии второго тела $\frac{E_{k1}}{E_{k2}}$ равно:

5. На рисунке изображены три положения груза пружинного маятника, совершающего свободные незатухающие колебания с амплитудой x_0 . Если в положении B полная механическая энергия маятника W = 4,0 Дж, то в положении *Б* она равна:

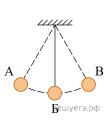
1) 0 Дж

2) 2,0 Дж

3) 4,0 Дж

4) 6,0 Дж

5) 8,0 Дж

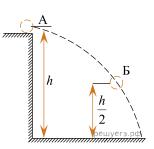

6. Абсолютное удлинение Δl_1 первой пружины в два раза больше абсолютного удлинения Δl_2 второй пружины. Если потенциальные энергии упругой деформации этих пружин равны ($E_{\Pi 1} = E_{\Pi 2}$), то отношение жесткости второй пружины к жесткости первой пружины $\frac{\kappa_2}{k_1}$ равно:

1) 1,0 2) \sqrt{2} 3) 1,7

4)2,0

7. На рисунке изображен математический маятник, совершающего свободные незатухающие колебания между точками А и В. Если в положении А полная механическая энергия маятника $W = 12,0 \, \text{Дж}$, то в положении E она равна:

1) 0 Дж


2) 6,0 Дж

3) 12,0 Дж

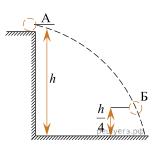
4) 18,0 Дж

5) 24,0 Дж

8. С некоторой высоты h в горизонтальном направлении бросили камень, траектория полёта которого показана штриховой линией (см. рис.). Если в точке E полная механическая энергия камня W = 12,0 Дж, то в точке A после броска она равна:

1) 0 Дж 2) 6,0 Дж

3) 8,0 Дж


4) 12,0 Дж

5) 24,0 Дж

9. Масса m_1 первого тела в два раза больше массы m_2 второго тела. Если кинетические энергии этих тел равны $(E_{k1}=E_{k2}),$ то отношение модуля скорости второго тела к модулю скорости первого тела $\frac{v_2}{v_1}$ равно:

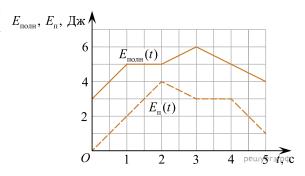
1)
$$\frac{1}{2}$$
 2) 1,0 3) $\sqrt{2}$ 4) 2,0 5) 4,0

10. С некоторой высоты h в горизонтальном направлении бросили камень, траектория полёта которого показана штриховой линией (см. рис.). Если в точке E полная механическая энергия камня $W = 8.0 \, \text{Дж}$, то в точке Aпосле броска она равна:

1) 0 Дж

2) 4,0 Дж

3) 8,0 Дж


4) 12,0 Дж

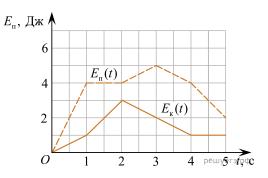
5) 16,0 Дж

11. Модуль скорости v_1 первого тела в два раза больше модуля скорости движения v_2 второго тела. Если массы этих тел равны $(m_1=m_2)$, то отношение кинетической энергии первого тела к кинетической энергии второго тела $\frac{E_{k1}}{E_{k2}}$ равно:

1) 1 2)
$$\sqrt{2}$$
 3) 2 4) 4 5) 8

12. На рисунке сплошной линией показан график зависимости полной механической энергии $E_{\rm полн}$ тела $E_{\rm полн}$, $E_{\rm п}$, Дж от времени t, штриховой линией — график зависимости потенциальной энергии E_{Π} тела от времени t. Кинетическая энергия $E_{\rm K}$ тела оставалась неизменной в течение промежутка времени:

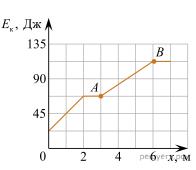
1) (0; 1) c

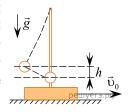

2) (1; 2) c

3) (2; 3) c

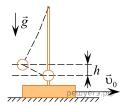
4)(3;4)c

5) (4; 5) c

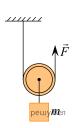

13. На рисунке сплошной линией показан график зависимости кинетической энергии $E_{\rm K}$ тела от времени t, штриховой линией — график зависимости потенциальной энергии E_n тела от времени t. Полная механическая энергия $E_{\rm полн}$ тела оставалась неизменной в течение промежутка времени:


1)
$$(0; 1)$$
 c 2) $(1; 2)$ c 3) $(2; 3)$ c 4) $(3; 4)$ c 5) $(4; 5)$ c

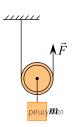
- **14.** Материальная точка массой m=2,0 кг движется вдоль оси Ox. Если кинематический закон движения материальной точки имеет вид $x(t)=A+Bt+Ct^2$, где A=2,0 м, B=1,0 $\frac{\mathrm{M}}{\mathrm{C}}$, C=1,0 $\frac{\mathrm{M}}{\mathrm{C}^2}$, то кинетическая энергия E_{K} материальной точки в момент времени t=3,0 с равна ... Дж.
- **15.** Материальная точка массой m=2,0 кг движется вдоль оси Ox. Если кинематический закон движения материальной точки имеет вид $x(t)=A+Bt+Ct^2$, где A=2,0 м, B=2,0 $\frac{\mathrm{M}}{\mathrm{C}}$, C=1,0 $\frac{\mathrm{M}}{\mathrm{C}^2}$, то кинетическая энергия E_{K} материальной точки в момент времени t=2,0 с равна ... Дж.
- **16.** Тело массой m=0,25 кг свободно падает без начальной скорости с высоты H. Если на высоте h=20 м кинетическая энергия тела $E_{\rm K}=30$ Дж, то первоначальная высота H равна ... м.
- 17. Тело свободно падает без начальной скорости с высоты H=30 м. Если на высоте h=20 м потенциальная энергия тела по сравнению с первоначальной уменьшилась на $\Delta E_{\Pi}=3.0$ Дж, то его масса m равна ... г.
- **18.** Тело массой m=0.25 кг свободно падает без начальной скорости с высоты H. Если на высоте h=20 м потенциальная энергия тела по сравнению с первоначальной уменьшилась на $_{\Pi}=65$ Дж, то высота H равна ... м.
- **19.** Тело массой m=0.25 кг свободно падает без начальной скорости с высоты H=30 м. Тело обладает кинетической энергией $_{\rm K}=30$ Дж на высоте h, равной ... м.
- **20.** Камень бросили вертикально вверх с поверхности Земли со скоростью, модуль которой $\upsilon=20~\frac{\mathrm{M}}{\mathrm{C}}$. Кинетическая энергия камня равна его потенциальной на высоте h, равной ... м.
- **21.** Тело свободно падает без начальной скорости с высоты h=17 м над поверхностью Земли. Если на высоте $h_1=2,0$ м кинетическая энергия тела $E_{\rm K}=1,8$ Дж, то масса m тела равна ... ${\bf r}$.
- **22.** Тело массой m=100 г свободно падает без начальной скорости с высоты h над поверхностью Земли. Если на высоте $h_1=6.0$ м кинетическая энергия тела $E_{\rm K}=12$ Дж, то высота h равна ... м.
- **23.** Тело свободно падает без начальной скорости с высоты h=20 м над поверхностью Земли. Если масса тела m=200 г, то на высоте $h_1=8,0$ м кинетическая энергия E_{κ} тела равна ... Дж.


24. На рисунке приведён график зависимости кинетической энергии E_{κ} тела, движущегося вдоль оси Ox, от координаты x. На участке AB модуль результирующей сил, приложенных к телу, равен ... Н.

25. На гладкой горизонтальной поверхности установлен штатив массой M=800 г, к которому на длинной нерастяжимой нити подвешен шарик массой m=200 г, находящийся в состоянии равновесия (см. рис.). Штативу ударом сообщили горизонтальную скорость, модуль которой $\upsilon_0=0.95$ м/с. Чему равна максимальная высота h, на которую поднимется шарик после удара? Ответ приведите в миллиметрах.



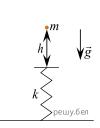
26. На гладкой горизонтальной поверхности установлен штатив массой M=900 г, к которому на длинной нерастяжимой нити подвешен шарик массой m=100 г, находящийся в состоянии равновесия (см. рис.). Штативу ударом сообщили горизонтальную скорость, модуль которой $\upsilon_0=1,0$ м/с. Чему равна максимальная высота h, на которую поднимется шарик после удара? Ответ приведите в миллиметрах.


- **27.** Два маленьких шарика массами $m_1 = 16$ г и $m_2 = 8$ г подвешены на невесомых нерастяжимых нитях одинаковой длины l так, что поверхности шариков соприкасаются. Первый шарик сначала отклонили таким образом, что нить составила с вертикалью угол $\alpha = 60^{\circ}$, а затем отпустили без начальной скорости. Если после неупругого столкновения шарики стали двигаться как единое целое и максимальная высота, на которую они поднялись, $h_{\rm max} = 6.0$ см, то длина l нити равна ... **см**.
- **28.** Два маленьких шарика массами $m_1 = 24$ г и $m_2 = 12$ г подвешены на невесомых нерастяжимых нитях одинаковой длины l = 63 см так, что поверхности шариков соприкасаются. Первый шарик сначала отклонили таким образом, что нить составила с вертикалью угол $\alpha = 60^{\circ}$, а затем отпустили без начальной скорости. Если после неупругого столкновения шарики стали двигаться как единое целое и максимальная высота h_{max} , на которую они поднялись, равна ... **см**.
- **29.** На невесомой нерастяжимой нити длиной l=98 см висит небольшой шар массой M=38,6 г. Пуля массой m=1,4 г, летящая горизонтально со скоростью \vec{v}_0 , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости v_0 пули, равном ...**м/с**.
- **30.** Два маленьких шарика массами $m_1 = 18$ г и $m_2 = 9,0$ г подвешены на невесомых нерастяжимых нитях одинаковой длины l так, что поверхности шариков соприкасаются. Первый шарик сначала отклонили таким образом, что нить составила с вертикалью угол $\alpha = 60^\circ$, а затем отпустили без начальной скорости. Если после неупругого столкновения шарики стали двигаться как единое целое и максимальная высота, на которую они поднялись $h_{\rm max} = 8,0$ см, то длина l нити равна ... см.
- **31.** Два маленьких шарика массами m_1 = 32 г и m_2 = 16 г подвешены на невесомых нерастяжимых нитях одинаковой длины l = 99 см так, что поверхности шариков соприкасаются. Первый шарик сначала отклонили таким образом, что нить составила с вертикалью угол $\alpha = 60^\circ$, а затем отпустили без начальной скорости. Если после неупругого столкновения шарики стали двигаться как единое целое, то максимальная высота h_{max} на которую они поднялись равна ... **см**.

- **32.** Два маленьких шарика массами $m_1 = 30$ г и $m_2 = 15$ г подвешены на невесомых нерастяжимых нитях одинаковой длины l так, что поверхности шариков соприкасаются. Первый шарик сначала отклонили таким образом, что нить составила с вертикалью угол $\alpha = 60^{\circ}$, а затем отпустили без начальной скорости. Если после неупругого столкновения шарики стали двигаться как единое целое и максимальная высота, на которую они поднялись $h_{\text{max}} = 10.0$ см, то длина l нити равна ... см.
- **33.** На невесомой нерастяжимой нити длиной l=72 см висит небольшой шар массой M=43,6 г. Пуля массой m=2,4 г, летящая горизонтально со скоростью \vec{v}_0 , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости v_0 пули, равном ...**м/с**.
- **34.** На невесомой нерастяжимой нити длиной l=1,28 м висит небольшой шар массой M=58 г. Пуля массой m=4 г, летящая горизонтально со скоростью \vec{v}_0 , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости v_0 пули, равном ...**м/с**.
- **35.** На невесомой нерастяжимой нити длиной l=72 см висит небольшой шар массой M=52 г. Пуля массой m=8 г, летящая горизонтально со скоростью $\vec{\upsilon}_0$, попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости υ_0 пули, равном ...**м/с**.
- **36.** На невесомой нерастяжимой нити длиной l=72 см висит небольшой шар массой M=34 г. Пуля массой m=3 г, летящая горизонтально со скоростью $\vec{\upsilon}_0$, попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости υ_0 пули, равном ...**м/с**.
- **37.** Груз массой m=0.80 кг, подвешенный на длинной невесомой нерастяжимой нити, отклонили так, что нить заняла горизонтальное положение, и отпустили без начальной скорости. В момент времени, когда нить составляла угол $\alpha=60^\circ$ с вертикалью, модуль силы $F_{\rm H}$ натяжения нити был равен ... H.
- **38.** Груз массой m=9,0 кг равномерно поднимают с помощью подвижного блока (см. рис.). Если коэффициент полезного действия блока $\eta=75\%$, то модуль силы F, приложенной к свободному концу верёвки, равен ... Н.

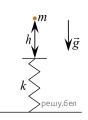
39.

Груз массой m=7,2 кг равномерно поднимают с помощью подвижного блока (см. рис.). Если коэффициент полезного действия блока $\eta=80$ %, то модуль силы F, приложенной к свободному концу верёвки, равен ... H.

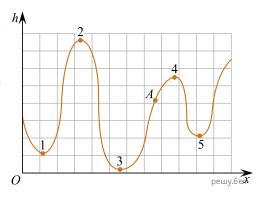


40. Воздух считается загрязнённым диоксидом серы, если в одном кубическом метре воздуха содержится больше чем $N_0 = 1.9 \cdot 10^{18}$ молекул диоксида серы. В одном килограмме диоксида серы находится $N_1 = 9.4 \cdot 10^{24}$. Если в воздух попадёт m = 10 кг диоксида серы, то максимальный объём V загрязнённого воздуха будет равен:

1)
$$4.9 \cdot 10^5 \text{ m}^3$$
 2) $1.8 \cdot 10^6 \text{ m}^3$ 3) $4.9 \cdot 10^6 \text{ m}^3$ 4) $1.8 \cdot 10^7 \text{ m}^3$ 5) $4.9 \cdot 10^7 \text{ m}^3$

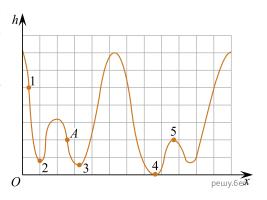

- **41.** Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью $\vec{\upsilon}$. Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F_c}=-\beta\vec{\upsilon}$, где $\beta=1,25$ $\frac{H\cdot c}{M}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости υ движения электроскутера равен ... $\frac{M}{c}$.
- **42.** Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=70 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ($|q_0|$ =200 пКл) шарик массой m=630 мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет $\eta=36,0$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами E=400 кВ/м, то период T ударов шарика об одну из пластин равен ... мс.
- **43.** Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=80 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ($|q_0|=500$ пКл) шарик массой m=380 мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет $\eta=19,0$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами E=250 кВ/м, то период T ударов шарика об одну из пластин равен ... мс.
- **44.** Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=20 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ($|q_0|$ =400\ пКл) шарик массой m=180 мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет $\eta=36,0$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами E=200 кВ/м, то период T ударов шарика об одну из пластин равен ... мс.
- **45.** Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=38 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ($|q_0|=400\,$ пКл) шарик массой $m=100\,$ мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет $\eta=19,0\,$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами $E=100\,$ кВ/м, то период T ударов шарика об одну из пластин равен ... мс.
- **46.** Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=40 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ($|q_0|=100\,$ пКл) шарик массой $m=720\,$ мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет $\eta=36,0\,$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами $E=400\,$ кВ/м, то период T ударов шарика об одну из пластин равен ... мс.
- **47.** Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=10 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ($|q_0|=100\,$ пКл) шарик массой $m=380\,$ мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет $\eta=19,0\,$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами $E=100\,$ кВ/м, то период T ударов шарика об одну из пластин равен ... мс.

- **48.** Подъёмный кран равномерно поднимает железобетонную плиту массой m=3,0 т на высоту h=21 м за промежуток времени $\Delta t=1,0$ мин. Если коэффициент полезного действия подъёмного крана $\eta=80\%$, то мощность P, развиваемая электродвигателем крана, равна ... кВт. *Ответ записать в киловаттах и округлить до целых*.
- **49.** Невесомая пружина жёсткостью $k=200~\frac{H}{_{
 m M}}$ закреплена вертикально на столе. К верхнему концу пружины прикреплена лёгкая горизонтальная пластинка. С высоты $h=25~{
 m cm}$ (см. рис.) на пластинку без начальной скорости падает маленький шарик массой $m=190~{
 m r}$ и прилипает к ней. Если длина пружины в недеформированном состоянии $l_0=30~{
 m cm}$, то в ходе колебаний пластинка с шариком будет подниматься относительно поверхности стола на максимальную высоту H, равную ... см.


Ответ запишите в сантиметрах, округлив до целых.

- **50.** Подъёмный кран равномерно поднимает железобетонную плиту массой m=2,5 т на высоту h=16 м за промежуток времени $\Delta t=1,5$ мин. Если мощность, развиваемая электродвигателем крана, P=6,0 кВт, то коэффициент полезного действия η подъёмного крана равен ... %.
- **51.** Невесомая пружина жёсткостью $k=200\,$ Н/м закреплена вертикально на столе. К верхнему концу пружины прикреплена лёгкая горизонтальная пластинка. С высоты $h=30\,$ см (см. рис.) на пластинку без начальной скорости падает маленький шарик массой $m=150\,$ г и прилипает к ней. Если длина пружины в недеформированном состоянии $l_0=35\,$ см, то в ходе колебаний пластинка с шариком будет подниматься относительно поверхности стола на максимальную высоту H, равную ... см.

Ответ запишите в сантиметрах, округлив до целых.


52. Небольшое тело скользит по гладкой поверхности горки в вертикальной плоскости. Зависимость высоты h точек поверхности горки от координаты x показана на рисунке. Нулевой уровень потенциальной энергии совпадает с горизонтальной осью Ox. Если в точке A потенциальная энергия тела была в два раза больше его кинетической энергии, то точки, в которые тело не может переместиться из точки A, обозначены цифрами:

1) 1 2) 2 3) 3 4) 4 5) 5

- **53.** Автомобиль трогается с места и, двигаясь равноускорено и прямолинейно, проходит по горизонтальному участку шоссе путь s=20.0 м за промежуток времени $\Delta t=2.00$ с. Если масса автомобиля m=1.00 т, то его кинетическая энергия $E_{\rm k}$ в конце пути равна ... кДж.
- **54.** Плита массой m=120 кг была равномерно поднята с помощью подъемного механизма на высоту h=16,0 м за промежуток времени $\Delta t=30,0$ с. Если коэффициент полезного действия 80%. то мощность, развиваемая двигателем, равна ... Вт.

55. Небольшое тело скользит по гладкой поверхности горки в вертикальной плоскости. Зависимость высоты h точек поверхности горки от координаты x показана на рисунке. Нулевой уровень потенциальной энергии совпадает с горизонтальной осью Ox. Если в точке A потенциальная энергия тела была в два раза меньше его кинетической энергии, то точки, в которые тело не может переместиться из точки A, обозначены цифрами:

1) 1 2) 2 3) 3 4) 4 5) 5

- **56.** Автомобиль трогается с места и, двигаясь равноускорено и прямолинейно, проходит по горизонтальному участку шоссе путь s=20.0 м за промежуток времени $\Delta t=2.00$ с. Если масса автомобиля m=1.54 т, то его кинетическая энергия E_{κ} в конце пути равна ... кДж.
- **57.** Плита массой m=134 кг была равномерно поднята с помощью подъёмного механизма на высоту $h=18,0\,$ м за промежуток времени $\Delta t=39,0\,$ с. Если коэффициент полезного действия подъёмного механизма $\eta=80,0\,$ %, то мощность P, развиваемая электродвигателем механизма, равна ... Вт. *Ответ запишите в ваттах, округлив до целых*.